Acta Crystallographica Section E

Structure Reports

Online
ISSN 1600-5368

Abdullah Aydın, ${ }^{\text {a* }}$, Mehmet Akkurt, ${ }^{\text {b }}$ Tijen Önkol ${ }^{\text {c }}$ and Orhan Büyükgüngör ${ }^{\text {d }}$

${ }^{\text {a }}$ Department of Science Education, Faculty of Education, Kastamonu University, 37200 Kastamonu, Turkey, ${ }^{\mathbf{b}}$ Department of Physics, Faculty of Arts and Sciences, Erciyes University, 38039 Kayseri, Turkey, ${ }^{\text {c }}$ Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Gazi University, 06330 Ankara, Turkey, and ${ }^{\text {d Department of Physics, Faculty of Arts and }}$ Sciences, Ondokuz Mayıs University, 55139 Samsun, Turkey

Correspondence e-mail: aaydin@gazi.edu.tr

Key indicators

Single-crystal X-ray study
$T=296 \mathrm{~K}$
Mean $\sigma(\mathrm{C}-\mathrm{C})=0.005 \AA$
R factor $=0.045$
$w R$ factor $=0.123$
Data-to-parameter ratio $=14.2$

For details of how these key indicators were automatically derived from the article, see http://journals.iucr.org/e.

[^0]
3-[6-(2-Chlorobenzoyl)-2-oxo-2,3-dihydro-1,3-benzothiazol-3-yl]propanenitrile

The title compound, $\mathrm{C}_{17} \mathrm{H}_{11} \mathrm{ClN}_{2} \mathrm{O}_{2} \mathrm{~S}$, crystallizes with two crystallographically independent molecules in the asymmetric unit. In the molecular structure, there are intramolecular weak $\mathrm{C}-\mathrm{H} \cdots \mathrm{O}$ hydrogen bonds, which consolidate the molecular conformation.

Comment

Benzothiazolinone-2-benzoxazolinone derivatives exhibit a variety of pharmacological effects, including analgesic and anti-inflammatory activity (Fereira et al., 1995; Ünlü et al., 2003). The title compound, (I), is used as an intermediate product in the synthesis of these types of compounds. We report here the crystal structure of (I).

The asymmetric unit of (I), which contains two independent molecules, is shown in Fig. 1. The bond lengths and angles have normal values (Allen et al., 1987) and are comparable to those in related structures (Aydın et al., 2003; Işık et al., 2004). The benzothiazole rings in each molecule are essentially planar, with a maximum deviation of 0.019 (1) A for atom S1

Figure 1
The asymmetric unit of (I), showing the atom-numbering scheme and 30% probability displacement ellipsoids.

Received 17 November 2006
Accepted 23 November 2006
\qquad

Figure 2
The theoretical structure of the title molecule (I), calculated by the $C N D O$ aproximation (Pople \& Beveridge, 1970).
in molecule 1 and 0.014 (2) \AA for N3 in molecule 2. The planes of these rings in the two molecules make dihedral angles of 69.0 (1) and $63.3(1)^{\circ}$, respectively, with the C12-C17 and C29-C34 benzene rings. The dihedral angles between the mean planes of the two benzene rings [(C12-C17) and (C29$\mathrm{C} 34)$] and the two benzimidazole rings $[(\mathrm{C} 1-\mathrm{C} 7 / \mathrm{N} 1 / \mathrm{S} 1)$ and (C18-C24/N3/S2)], in the asymmetric unit, are 48.7 (2) and $1.45(8)^{\circ}$, respectively.

A quantum-chemical calculation was performed using the CNDO (Pople \& Beveridge, 1970) approximation. A view of the calculated molecule (I) is shown in Fig. 2. The charges at atoms $\mathrm{Cl} 1, \mathrm{~S} 1, \mathrm{~N} 1, \mathrm{~N} 2, \mathrm{O} 1$ and O 2 are $-0.178,-0.167,-0.063$, $-0.200,-0.299$ and $-0.400 \mathrm{e}^{-}$, respectively. The calculated dipole moment of (I) is ca 5.622 Debye. The HOMO and LUMO energy levels are -10.6709 and 2.4616 eV , respectively.

The molecular conformation of (I) is stabilized by weak C $\mathrm{H} \cdots \mathrm{O}$ intramolecular hydrogen bonds (Table 1).

Experimental

Acylation of 2-benzothiazolinone with 2-chlorobenzoic acid was carried out in polyphosphoric acid as reported in the literature (Çakır et al., 1997). Acrylonitrile (12.0 mmol) was added to a solution of 6 -(2-chlorobenzoyl)-2-oxo-1,3-benzothiazol (10.0 mmol) and triethylamine (12.0 mmol) in 50 ml water. After heating (6 h) at 323-333 K while stirring, the mixture was stirred at room temperature for a further 18 h . A solid precipitate formed which was filtered off, washed with water to neutral pH , dried, and crystallized from methanolwater [yield 70%, m.p. 369-370 K (Ünlü et al., 2003)].

Crystal data

$$
\begin{aligned}
& \mathrm{C}_{17} \mathrm{H}_{11} \mathrm{ClN}_{2} \mathrm{O}_{2} \mathrm{~S} \\
& M_{r}=342.80 \\
& \text { Triclinic, } P \overline{1} \\
& a=7.089(1) \AA \AA \\
& b=8.522(1) \AA \\
& c=26.042(2) \AA \\
& \alpha=97.724(6)^{\circ} \\
& \beta=91.659(6)^{\circ} \\
& \gamma=93.257(6)^{\circ}
\end{aligned}
$$

Data collection

Stoe IPDS-2 diffractometer ω scans
Absorption correction: integration (X-RED32; Stoe \& Cie, 2002) $T_{\text {min }}=0.844, T_{\text {max }}=0.951$

Refinement

Refinement on F^{2}
H -atom parameters constrained
$R\left[F^{2}>2 \sigma\left(F^{2}\right)\right]=0.045$
$w R\left(F^{2}\right)=0.123$
$S=0.84$
5906 reflections
416 parameters

24878 measured reflections 5906 independent reflections 2842 reflections with $I>2 \sigma(I)$
$R_{\text {int }}=0.085$
$\theta_{\text {max }}=26.0^{\circ}$
$w=1 /\left[\sigma^{2}\left(F_{\mathrm{o}}{ }^{2}\right)+(0.0646 P)^{2}\right]$
where $P=\left(F_{\mathrm{o}}^{2}+2 F_{\mathrm{c}}{ }^{2}\right) / 3$
$(\Delta / \sigma)_{\max }<0.001$
$\Delta \rho_{\max }=0.68 \mathrm{e}^{\AA^{-3}}$
$\Delta \rho_{\min }=-0.23$ e \AA^{-3}

Table 1
Hydrogen-bond geometry ($\AA,{ }^{\circ}$).

$D-\mathrm{H} \cdots A$	$D-\mathrm{H}$	$\mathrm{H} \cdots A$	$D \cdots A$	$D-\mathrm{H} \cdots A$
$\mathrm{C} 8-\mathrm{H} 8 A \cdots \mathrm{O} 1$	0.97	2.47	$2.846(4)$	103
$\mathrm{C} 25-\mathrm{H} 25 A \cdots \mathrm{O} 3$	0.97	2.48	$2.852(4)$	103

All H atoms were positioned geometrically $[\mathrm{C}-\mathrm{H}=0.93$ (aromatic) and $0.97 \AA$ (methylene)] and constrained to ride on their parent atoms, with $U_{\text {iso }}(\mathrm{H})=1.2 U_{\text {eq }}(\mathrm{C})$.

Data collection: $X-A R E A$ (Stoe \& Cie, 2002); cell refinement: X AREA; data reduction: X-RED32 (Stoe \& Cie, 2002); program(s) used to solve structure: SIR97 (Altomare et al., 1999); program(s) used to refine structure: SHELXL97 (Sheldrick, 1997); molecular graphics: ORTEP-3 for Windows (Farrugia, 1997); software used to prepare material for publication: WinGX (Farrugia, 1999).

The authors acknowledge the Faculty of Arts and Sciences, Ondokuz Mayıs University, Turkey, for the use of the Stoe IPDS2 diffractometer (purchased under grant F. 279 of the University Research Fund).

References

Allen, F. H., Kennard, O., Watson, D. G., Brammer, L. \& Orpen, A. G. (1987). J. Chem. Soc. Perkin Trans. 2, pp. S1-19.

Altomare, A., Burla, M. C., Camalli, M., Cascarano, G. L., Giacovazzo, C., Guagliardi, A., Moliterni, A. G. G., Polidori, G. \& Spagna, R. (1999). J. Appl. Cryst. 32, 115-119.
Aydın, A., Önkol, T., Arıcı, C., Akkurt, M., Şahín, M. F. \& Ülkü, D. (2003). Acta Cryst. E59, o616-o618.
Çakır, B., Döoruer, D. S., Ünlü, S. \& Şahin, M. F. (1997). J. Fac. Pharm. Gazi. 14, 103-109.
Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565.
Farrugia, L. J. (1999). J. Appl. Cryst. 32, 837-838.
Fereira, S. H., Lorenzetti, B. B., Devissaguet, M., Lesieur, D. \& Tsouderos, Y. (1995). Br. J. Pharmacol. 114, 303-308.

Işık, Ş., Köysal, Y., Yavuz, M., Köksal, M. \& Erdoğan, H. (2004). Acta Cryst. E60, o2321-o2323.
Pople, J. A. \& Beveridge, D. L. (1970). Approximate Molecular Orbital Theory. New York: McGraw-Hill.
Sheldrick, G. M. (1997). SHELXL97. University of Göttingen, Germany.
Stoe \& Cie (2002). X-AREA (Version 1.18) and X-RED32 (Version 1.04). Stoe \& Cie, Darmstadt, Germany.
Ünlü, S., Önkol, T., Dündar, Y., Ökçelik, B., Küpeli, E., Yeşilada, E., Noyanalpan, N. \& Şahin, M. F. (2003). Arch. Pharm. Med. Chem. 336, 353361.

[^0]: © 2006 International Union of Crystallography All rights reserved

